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Abstract. A number of recent studies discuss the phenomenon of super resolution,

that is, the fact that a target can be localized with higher resolution than half a

wavelength as suggested by the classical diffraction limit. Here we discuss a special

type of super resolution corresponding to a high contrast in wave speed at the location

of respectively the point of observation and the one of the target. We quantify the

resolution achieved in this case and discuss image stability. It turns out that the image

is stable with respect to measurement noise but very sensitive to medium uncertainty.

The signal-to-noise ratio can in fact be significantly enhanced by exploiting resonance

frequencies and we discuss this in detail, considering source as well as reflector

broadband imaging.
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1. Introduction

Time reversal of waves was extensively studied in the last twenty years [6, 9, 10, 11, 13].

A time-reversal mirror consists in a set of transducers that can be used as receivers or

as transmitters. A classical time-reversal experiment consists of two steps. In the first

step, a source generates a wave that propagates through a medium and is recorded by

the time-reversal mirror used as a set of receivers. In the second step, the time-reversal

mirror is used as an array of transmitters, it re-emits the time-reversed recorded signals.

It turns out that the wave focuses back at the initial source position, as if the wave were

being played backwards. The refocusing properties have been studied experimentally,

numerically and theoretically. They are characterized by diffraction-limited focal spots,

that is to say, the size of the time-reversed focal spot is half the source carrier wavelength

when the original source is point-like and the time-reversal mirror surrounds the region

of interest.

Enhanced refocusing is a remarkable property observed in many time-reversal

experiments and it can follow from several mechanisms. First, the diffraction limit

can be overcome if the source is replaced by its time-reversed image during the second

step of the time-reversal experiment. This requires to use an active sink that absorbs the

time-reversed wave precisely at the original source location and at the exact refocusing

time [7]. Second it is possible to obtain subwavelength focusing when the initial source is

in the near field of the time-reversal mirror and the propagating medium is homogeneous

and isotropic [8]. Third, focusing beyond the diffraction limit with far-field time reversal

is possible, provided the medium in the near field of the original source has a high

effective index and can radiate in the far field spatial information of the near field of the

source. For instance a random distribution of scatterers or small resonators placed in the

vicinity of the source can achieve this goal and locally reduce the effective wavelength

[1, 15, 18, 20, 21].

Here we would like to analyze this last mechanism in the context of imaging, that

is, in the context where the object (source or reflector) to be imaged is imbedded in a

high-index (low-velocity) region. In such a case, the physical size of the object is small

compared to the homogeneous wavelength of the wave used to probe the medium, but

large (or at least not negligible) compared to the local wavelength evaluated in the low-

velocity region. However the work on time reversal cited above does not apply directly

to imaging. Indeed, imaging is different from time reversal. Similarly to time reversal,

imaging consists of two steps, data acquisition and data processing. But contrarily to

time reversal, the data processing is numerical and is based on the resolution of the wave

equation in a fictitious medium (given a priori or estimated itself). The data processing

may consist of the minimization of the misfit between the measured data and synthetic

data obtained with the numerical solver (least-squares imaging), or it may consist of

backpropagation, adjoint or matched field processing, that can be seen as simplified

versions of least-square imaging [2, 3, 6, 23]. Experimental subwavelength imaging

has been achieved using high-contrast materials or arrays of resonators [4, 17, 22]. In
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this case, the robustness of the procedure with respect to measurement noise and with

respect to medium uncertainty is in fact the key issue.

In this paper we consider a simple one-dimensional framework. Our first objective

is to estimate the location of a source that is in a section of anomalous low velocity.

The picture that we want to analyze in some detail is that this allows us to estimate the

location of the source with high accuracy. When the wave exits a section of low velocity

its spatial support will be expanded, conversely if it enters the section of low velocity it

will be compressed. This is what gives an apparent super resolution phenomenon. If one

considers two nearby sources in a section of low velocity then at an observation point

outside the section one would observe two pulses of relatively long wavelength, moreover,

one would be able to resolve the locations of the sources with an accuracy greater than

that corresponding to the wavelength at the point of observation. We want to analyze

this phenomenon in some detail and quantify the resolution enhancement, moreover,

examine its robustness with respect to measurement noise and medium uncertainty.

Via our rigorous analysis we find that exploiting resonance frequencies is important in

order to achieve enhancement of the signal-to-noise ratio.

Our second objective is to identify a reflector or inclusion in the section of low

velocity with a source located outside of this section. We show that again the contrast

in speed gives a resolution enhancement. We also set forth a detailed stability analysis

incorporating both effects of medium uncertainty as well as measurement noise and

again point to the importance of resonance frequencies.

In the analysis we shall use a mathematical framework similar to the one developed

in [13]. However, here the focus is on a high contrast background medium rather than

on highly oscillatory medium fluctuations.

The outline of the paper is as follows. We describe the medium and the acoustic

propagation model in Section 2 which articulates how the source is imbedded in a

section of low velocity. Based on the recorded wave at a point outside the anomalous

section we construct the image of the source point in Section 3 with a focus on a

discussion of resolution. In Section 4 we show that the presence of measurement noise

does not hamper resolution as long as a resolvability condition is satisfied, but that the

imaging functions are very sensitive to medium uncertainty. In Section 5 we generalize

our discussion regarding source imaging to the case with reflector imaging. Finally, in

Section 6 we forward some concluding remarks.

2. Superresolution Source Imaging via Medium Contrast

2.1. Scalar Wave Model

We consider acoustic waves with conservation of momentum and mass for velocity u(x, t)

and pressure p(x, t):

ρ0ut + px = δ(t)δ(x− y)
√

ζ, (1)

c−2pt + ρ0ux = 0, (2)
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for ρ0 being the assumed constant density, c the local velocity, and ζ = cρ0 the

impedance. Throughout the paper the subscripts stand for partial derivatives.

An impulse source is imposed at the spatial location y. We assume dimensionless

coordinates and a constant density so that we have

c−2ptt − pxx = −
√

ζδ(t)δ′(x− y),

with c being piecewise constant:

c(x) =

{
c0/n if x ∈ [−L/2, L/2]

c0 otherwise
(3)

We assume that n > 1 and standard radiation conditions. We assume that the source

is located in the section of low velocity: y ∈ (−L/2, L/2). We shall also assume that

we measure the wave at the location yo ∈ (L/2,∞) and based on the recorded wave we

aim to estimate the location of the source, that is y.

2.2. Wave Decomposition

Below we follow the strategy developed in [13, Chapter 3]. We expand first the wave field

into right propagating modes (A) and left propagating modes (B) by the decomposition
[

A(x, t)

B(x, t)

]
=




1√
ζ(x)

√
ζ(x)

− 1√
ζ(x)

√
ζ(x)



[

p(x, t)

u(x, t)

]
, (4)

and thus [
p(x, t)

u(x, t)

]
=

1

2

[ √
ζ(x) −

√
ζ(x)

1√
ζ(x)

1√
ζ(x)

][
A(x, t)

B(x, t)

]
. (5)

Let the Fourier transforms be defined by

Â(x, ω) =

∫
A(x, t)eiωtdt, B̂(x, ω) =

∫
B(x, t)eiωtdt,

then we have from (1-2):

Âx −
iω

c(x)
Â = δ(x− y), B̂x +

iω

c(x)
B̂ = −δ(x− y), (6)

for x 6= ±L/2. We introduce the complex amplitudes a and b of the propagating waves

Â(x, ω) = a(x, ω)eiωτ(x), B̂(x, ω) = b(x, ω)e−iωτ(x), (7)

with the travel time defined by

τ(x) =

∫ x

0

dx′

c(x′)
=





− nL
2c0

+ x+L/2
c0

for x < −L/2
nx
c0

for −L/2 < x < L/2
nL
2c0

+ x−L/2
c0

for L/2 < x

The travel time is defined with respect to the origin but any other point could have been

used. From (6) and (7) the amplitudes a, b are piecewise constant over the intervals
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where there is no source and no jump in the medium parameter:

a(x, ω) =





a0(ω) for x < −L/2

a1(ω) for −L/2 < x < y

a2(ω) for y < x < L/2

a3(ω) for L/2 < x

,

and similarly for b(x, ω), see Figure 1.

Interface conditions. At the interface x = L/2, the local speed of sound c and

the local impedence ζ jump, so the continuity of p̂ and û:[
p̂

û

]
((L/2)+) =

[
p̂

û

]
((L/2)−)

gives jump conditions for the amplitudes of the left and right propagating modes in view

of (5):
[ √

ζ −√
ζ

1√
ζ

1√
ζ

][
Â

B̂

]
((L/2)+) =

[ √
ζ −√

ζ
1√
ζ

1√
ζ

][
Â

B̂

]
((L/2)−), (8)

and similarly at the interface x = −L/2. If we introduce the interface coefficients r±

and the jump matrices J±:

r± =
1

2

( 1√
n
±√

n
)
, J± =

[
r+ ±r−

±r− r+

]
,

then (8) reads
[

Â

B̂

]
((L/2)+) = J−

[
Â

B̂

]
((L/2)−),

and similary [
Â

B̂

]
((−L/2)+) = J+

[
Â

B̂

]
((−L/2)−).

Therefore [
a3(ω)e

iωnL
2c0

b3(ω)e
−iωnL

2c0

]
= J−

[
a2(ω)e

iωnL
2c0

b2(ω)e
−iωnL

2c0

]
, (9)

[
a1(ω)e

−iωnL
2c0

b1(ω)e
iωnL
2c0

]
= J+

[
a0(ω)e

−iωnL
2c0

b0(ω)e
iωnL
2c0

]
.

Radiation conditions. The radiation condition gives that

b3(ω) = 0, a0(ω) = 0, (10)

that is, no energy is coming in from ±∞.

Source conditions. Integrating (6) accross the source location y we get the jump

relations [Â]y
+

y− = 1 and [B̂]y
+

y− = −1, and therefore

a2(ω) = a1(ω) + e
−iωny

c0 , (11)

b2(ω) = b1(ω)− e
iωny

c0 . (12)
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✲

−L/2 L/2 x

✲
a2

✛
b2

✲
a3

✛
b3 = 0

✲
a1

✛
b1

✲
a0 = 0

✛
b0

c = c0 c = c0/n c = c0

Figure 1. Wave amplitudes.

The relations (9), (10), (11), and (12) now give eight equations for the eight

unknowns aj , bj, j = 0, . . . , 3. We assume that we observe the transmitted wave at

yo > L/2 within the frequency band of the measurement device, that is we measure

a3(ω)e
iωτ(yo) for ω ∈ [ωc − Ω/2, ωc + Ω/2], where ωc is the central (angular) frequency

and Ω is the bandwidth, with Ω < 2ωc. We next identify the explicit expression for the

observation.

2.3. Wave Recordings

We have available the frequency response:

{ames(ω), ω ∈ [ωc − Ω/2, ωc + Ω/2]},

where ames(ω) is the measured complex amplitude a3(ω)e
iωτ(yo) of the wave recorded at

yo from which a known phase is removed:

ames(ω) = a3(ω)e
iωτ(yo)e

−i ω
c0

nL
2
−i ω

c0
(yo−L

2
)
. (13)

The phase ω
c0

nL
2

+ ω
c0
(yo − L

2
) is known provided n is known and then it compensates

exactly for ωτ(yo).

We introduce the reflection and transmission coefficients associated with the

interface at L/2:

R = −r−

r+
=

n− 1

n+ 1
, T =

1

r+
=

2
√
n

1 + n
. (14)

Note that T 2 +R2 = 1 and that the reflection coefficient is close to 1 when n ≫ 1 and

it can be expanded as R = 1− 2/n+O(1/n2).

From (9), (10), (11), and (12), the observed amplitude can be expressed as:

ames(ω) = T e
−iωny

c0
1−Re

2iωn(y+L/2)
c0

1−R2e
2iωnL

c0

. (15)

It can be expanded as:

ames(ω) = T e
−iωny

c0

∞∑

j=0

(
R2e

2iωnL
c0

)j

− T Re
iωn(y+L)

c0

∞∑

j=0

(
R2e

2iωnL
c0

)j

,

with the first term (j = 0) in the first sum corresponding to the contribution of the

right-going wave generated by the source in (11) that is directly transmitted through
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the interface. The other terms in this sum correspond to the contributions of the wave

components that have been reflected back and forth in the section several times before

being emitted out of the section, thus associated with a phase delay corresponding to the

travel time back and forth through the section. The terms of the second sum correspond

to the contributions of the left-going wave emitted by the source in (12).

3. Imaging Functions

3.1. Matched Field Processing

The adjoint imaging function (or coherent matched field imaging function, inspired by

the known properties of time reversal refocusing) is defined by [6, 23]:

Ia(ŷ) =
1

2Ω

∫ ωc+Ω/2

ωc−Ω/2

ames(ω)â(ŷ, ω)dω + c.c. , (16)

where c.c. stands for “complex conjugate” and the synthetic data â(ŷ, ω) is defined as

(15) but with the search point ŷ instead of y:

â(ŷ, ω) = T e
−iωnŷ

c0
1−Re

2iωn(ŷ+L/2)
c0

1−R2e
2iωnL

c0

. (17)

Proposition 3.1. When Ω ≫ πc0
nL

, we have

Ia(ŷ) = sinc
(Ωn(y − ŷ)

2c0

)
cos

(ωcn(y − ŷ)

c0

)

− 2R
1 +R2

sinc
(Ωn(y + ŷ + L)

2c0

)
cos

(ωcn(y + ŷ + L)

c0

)
, (18)

where sinc is the function sinc(s) = sin(s)/s.

If y, ŷ ∈ (−L/2, L/2) and are far away from −L/2 (that is farther than l defined

just below in (19)), then the second term in (18) can be neglected. This shows that the

imaging function is a rapidly modulated function with a sinc envelope, and the width

of the envelop (i.e. the resolution) is

l =
λB

n
, (19)

where λB is the wavelength associated with the bandwidth

λB =
2πc0
Ω

. (20)

We stress that λB is the wavelength associated to the bandwidth Ω at the observation

point, while l is the wavelength when evaluated at the location of the source, the slow

medium section.

Proof. Substituting (17) into (16) we find that Ia is the sum of four terms. They can

be addressed in the same way so we only compute the first of them:

I1(ŷ) =
1

Ω

∫ ωc+Ω/2

ωc−Ω/2

T 2 cos (ωn(ŷ−y)
c0

)

|1−R2e
2iωnL

c0 |2
dω.
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When Ω ≫ πc0
nL

, the denominator in the integrand is a rapidly-varying periodic function

in ω that is bounded from below by the positive constant (1 − R2)2. Therefore the

periodic averaging theorem [16, Chapter 4] gives

I1(ŷ) =
T 2

Ω

〈
1

1 +R4 − 2R2 cos(·)

〉∫ ωc+Ω/2

ωc−Ω/2

cos (
ωn(ŷ − y)

c0
)dω,

where 〈·〉 stands for an averaging over the periodic component. Since the value of the

average is 1/(1−R4) and T 2 = 1−R2, we get

I1(ŷ) =
1

1 +R2
sinc

(Ωn(y − ŷ)

2c0

)
cos

(ωcn(y − ŷ)

c0

)
.

The calculations of the three other terms give the desired result.

A conventional incoherent matched field imaging function is [6, 23]

Ib(ŷ) =
1

Ω

∫ ωc+Ω/2

ωc−Ω/2

|ames(ω)â(ŷ, ω)|2dω , (21)

where the synthetic data â(ŷ, ω) is defined by (17) (it is also known as incoherent

broadband Bartlett processor [5]).

Proposition 3.2. When Ω ≫ πc0
nL

, we have

Ib(ŷ) =
1 +R4

T 2(1 +R2)3

{
(1 +R2)2 + 2R2sinc

(Ωn(y − ŷ)

c0

)
cos

(2ωcn(y − ŷ)

c0

)

+ 2R2sinc
(Ωn(y + ŷ + L)

c0

)
cos

(2ωcn(y + ŷ + L)

c0

)}

− 2R(1 +R4)

T 2(1 +R2)2

{
sinc

(Ωn(2y + L)

2c0

)
cos

(ωcn(2y + L)

c0

)

+ sinc
(Ωn(2ŷ + L)

2c0

)
cos

(ωcn(2ŷ + L)

c0

)}
. (22)

Here the last three terms vanish if y and ŷ are far enough from −L/2 or L/2 (that

is farther than l in (19)). This incoherent imaging function has approximately the same

resolution properties as the coherent imaging imaging function Ia, it has in fact better

resolution by a factor two. However it possesses a large background contrarily to Ia.

This is quite problematic in particular when there are several sources, as the overlap

and interaction of the backgrounds and peaks become complicated, while Ia presents

the sum of the peaks by linearity of this imaging function. This justifies the fact that

we will focus our attention to Ia and its variants in the following.

Proof. The calculations follow the same lines as in the proof of Proposition 3.1. When

Ω ≫ πc0
nL

, the periodic averaging theorem gives

Ib(ŷ) =
T 4

Ω

〈
1

(1 +R4 − 2R2 cos(·))2
〉∫ ωc+Ω/2

ωc−Ω/2

(1 +R2)2 + 2R2 cos (
2ωn(ŷ − y)

c0
)

+ 2R2 cos (
2ωn(ŷ + y + L)

c0
)− 2R(1 +R2)

(
cos (

ωn(2y + L)

c0
) + cos (

ωn(2ŷ + L)

c0
)

)
dω,
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where 〈·〉 stands for an averaging over the periodic component. Since the value of the

average is (1 +R4)/(1−R4)3 and T 2 = 1−R2, we get the desired result.

3.2. Simplified Adjoint Imaging

In Figure 2 we plot the modulation function

∣∣∣ 1−R2

1−R2e
2iωnL

c0

∣∣∣

for n = 5 and for n = 20 as function of the dimensionless frequency 2ωL/c0. Note the

−4 −2 0 2 4
0

0.5

1
Modulation Function with n=5

−4 −2 0 2 4
0

0.5

1

Frequency 

Modulation Function with n=20

Figure 2. The modulation function |(1−R2)/(1−R2eiun)| as function of dimensionless

frequency u for n = 5, 20.

singular behavior in n. It means that, for large n, the adjoint imaging function only

uses the observations at the set of discrete frequencies where this factor is unity. This

motivates the introduction of a simplified version of the adjoint imaging function

Ip(ŷ) =
∆ω

2Ω

∞∑

m=−∞
I(ωc−Ω/2,ωc+Ω/2)(|ωm|)ames(ωm)â(ŷ, ωm) , (23)

where IB is the indicator function on B and

ωm = m∆ω, ∆ω =
πc0
nL

=
2π

τL
, (24)

with τL being the two-way travel time of the low-velocity section.

Proposition 3.3. When Ω ≫ ∆ω and y is not within the distance l (defined by (19))

of the boundaries ±L/2, then we have

Ip(ŷ) =
1 +R2

T 2
sinc

(Ωn(y − ŷ)

2c0

)
cos

(ωcn(y − ŷ)

c0

)
. (25)

The adjoint imaging function and simplified adjoint imaging function have the same

resolution, but the simplified version has an enhanced amplitude when n is large (since

(1 + R2)/T 2 ≃ n/2). This comes from the fact that the simplified version focuses on

the important contributions of the measured data at the resonant frequencies.



Medium Induced Resolution Enhancement 10

Proof. The expression of â becomes simpler when evaluated at the resonant frequencies:

â(ŷ, ωm) =
1

T e
−iωmnŷ

c0

(
1− (−1)mRe

2iωmnŷ
c0

)
,

where we have used the fact that exp(iωmnL/c0) = (−1)m. Since

ames(ωm) =
1

T e
−iωmny

c0

(
1− (−1)mRe

2iωmny
c0

)
,

the imaging function has the form

Ip(ŷ) =
∆ω

2Ω

∞∑

m=−∞
I(ωc−Ω/2,ωc+Ω/2)(|ωm|)â(y, ωm)â(ŷ, ωm)

and it has several contributions:

Ip(ŷ) =
∆ω(1 +R2)

2ΩT 2

∞∑

m=−∞
I(ωc−Ω/2,ωc+Ω/2)(|ωm|) cos

(ωmn(ŷ − y)

c0

)

− ∆ωR
ΩT 2

∞∑

m′=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω2m′ |) cos
(ω2m′n(ŷ + y)

c0

)

+
∆ωR
ΩT 2

∞∑

m′=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω2m′+1|) cos
(ω2m′+1n(ŷ + y)

c0

)
,

where the sign of the terms derive from the factor (−1)m. If ∆ω ≪ Ω and y is not

within the distance l (defined by (19)) of the boundaries ±L/2, then we can use the

continuum approximation for the sums, we find that the second and third sums cancel

each other and that the first sum can be replaced by the expression (25).

In Figure 3 the blue dashed line is the theoretical imaging function (25) normalized

to one plotted as function of relative offset ∆y/L = (y − ŷ)/L for ΩnL/c0 = 100 and

ωc/Ω = 10. The red solid line is the exact imaging function (23) (also normalized to

one) in the case with n = 5 and y = 0 and is seen to almost coincide with the asymptotic

form (25).

4. Stability and Resolvability

We discuss in this section the robustness of the imaging function (23) with respect to

additive measurement noise and medium uncertainty.

4.1. Robusteness with Respect to Measurement Noise

Assume that the measurements are corrupted by an additive noise so that we observe:

a3(ω) + noise

Then we have the generalization of (15)

ames(ω) = e
−iωny

c0

(
1−Re

2iωn(y+L/2)
c0

) T
1−R2e

2iωnL
c0

+W (ω),
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−0.1 −0.05 0 0.05 0.1
−1

−0.5

0

0.5

1

Search point offset:  ∆Y/L 

Imaging Function

I 1

Figure 3. Theoretical imaging function Ip given by (25) and normalized to one

(blue dashed line) for ΩnL/c0 = 100 and ωc/Ω = 10 as function of relative offset

∆y/L = (y − ŷ)/L. Imaging function defined by (23) and normalized to one (dashed

blue line) for n = 5 and y = 0.

where W (ω) models the measurement noise. The observations at the set of discrete

frequencies ωm are:

ames(ωm) =
1

T e
−iωmny

c0

(
1− (−1)mRe

2iωmny
c0

)
+ σwm,

where σ is the standard deviation of the measurement noise and wm is assumed to

be an independent and identically distributed sequence of zero mean and unit variance

complex circular random variables.

The expectation of the imaging function (23) is

E[Ip(ŷ)] =
∆ω

2Ω

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ωm|)â(y, ωm)â(ŷ, ωm)

and it is given by (25). The variance is given in the following proposition.

Proposition 4.1. If ∆ω ≪ Ω, then

V ar[Ip(ŷ)] =
∆ωσ2

2Ω

1 +R2

T 2
. (26)

Proof. The fluctuations of the imaging function have the form

V (ŷ) = Ip(ŷ)− E[Ip(ŷ)]

=
∆ωσ

2ΩT
∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ωm|)wme
iωmnŷ

c0

(
1− (−1)mRe

−2iωmnŷ
c0

)
.

Since the wm’s are independent and identically distributed with mean zero and variance

one, we have

V ar[Ip(ŷ)] =
(∆ω)2σ2

4Ω2T 2

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ωm|)
∣∣∣1− (−1)mRe

2iωmnŷ
c0

∣∣∣
2

.



Medium Induced Resolution Enhancement 12

By expanding the square modulus we can split the variance into several contributions:

V ar[Ip(ŷ)] =
(∆ω)2σ2

4Ω2

1 +R2

T 2

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ωm|)

− (∆ω)2σ2R
2Ω2T 2

∞∑

m′=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω2m′ |) cos (ω2m′nŷ

c0
)

+
(∆ω)2σ2R
2Ω2T 2

∞∑

m′=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω2m′+1|) cos (
ω2m′+1nŷ

c0
).

In the case that ∆ω ≪ Ω, the second and third sums cancel each other and we get the

desired result.

As a result we find the signal-to-noise ratio (with R ≃ 1 and T ≃ 2/
√
n):

SNR =
E[Ip(y)]

V ar[Ip(ŷ)]1/2
≃

√
nΩ

∆ωσ2
. (27)

Note that the SNR increases with the number of periods in the modulation function

(see Figure 2) and also with n. This gives the following result.

Corollary 4.2. In order to have a signal-to-noise ratio larger than unity for the imaging

function Ip defined by (23), we need

σ <

√
nΩ

∆ω
. (28)

4.2. Robusteness with Respect to Medium Uncertainty

In order to form the imaging function (23) we assumed a perfect knowledge of the

medium, that is to say of the index of refraction n. In this subsection we assume that

the underlying medium parameter 1/n is estimated with an error δ: 1/n̂ = (1 + δ)/n.

Then, denoting by ω̂m the estimated resonant frequencies:

∆̂ω =
πc0
n̂L

= ∆ω(1 + δ), ω̂m = m∆̂ω = ωm(1 + δ),

and by R̂ and T̂ the estimated reflection and transmission coefficients (with n̂ instead

of n in the formulas (14)), the imaging function (23) is defined by:

Ip(ŷ) =
∆̂ω

2Ω

∞∑

m=−∞
I(ωc−Ω/2,ωc+Ω/2)(|ω̂m|)ames(ω̂m)

1

T̂
e
iωmnŷ

c0

(
1− (−1)mR̂e

−2iωmnŷ
c0

)
.

Moreover, by (13), the phase removed in the measured amplitude a3(ω)e
iωτ(yo) is

ω
c0

n̂L
2
+ ω

c0
(yo − L

2
):

ames(ω) = a3(ω)e
iωτ(yo)e

−i ω
c0

n̂L
2
−i ω

c0
(yo−L

2
)
,

which does not compensate exactly for ωτ(yo), so that it remains a phase error
ω

c0(1+δ)
nL
2
δ.
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Proposition 4.3. The bias and blurring of the imaging function Ip defined by (23) are

negligible if and only if

δ <
1

nωcτL
. (29)

The condition (29) corresponds to an error in the estimate of the travel time τL
that is smaller than 1/(nωc) with ωc being the carrier frequency of the source.

Proof. Recall that τL = 2nL/c0 , and then the imaging function takes the form

Ip(ŷ) =
∆̂ω

2Ω

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω̂m|)
T eiωmδ

τL
4

T̂ (1−R2eiωmδτL)

×
(
e
i
ωmn(ŷ−y(1+δ))

c0 − (−1)mRe
i
ωmn(ŷ+y(1+δ))

c0 eiωmδ
τL
2

− (−1)mR̂e
−iωmn(ŷ+y(1+δ))

c0 + R̂Re
iωmn(y(1+δ)−ŷ)

c0 eiωmδ
τL
2

)

= Ip,1(ŷ) + Ip,2(ŷ) + Ip,3(ŷ) + Ip,4(ŷ).

We then get in particular

Ip,1(ŷ) =
T ∆̂ω

2T̂ Ω

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ω̂m|)eiωmδ
τL
4

∞∑

j=0

R2je
iωm(n(ŷ−y(1+δ))

c0
+jδτL)

=
T
T̂

∞∑

j=0

R2jsinc
(Ω
2
(
n∆ŷ

c0
+ (j + 1/4)δτL)

)
cos

(
ωc(

n∆ŷ

c0
+ (j + 1/4)δτL)

)
.

with ∆ŷ = ŷ − y(1 + δ). Since R ≃ 1− 2/n for large n, the support of the sum extends

over j of the order of n, and therefore there will be no blurring of the imaging function

if and only if the term ωcjδτL does not blur the sum in j, that is to say, if (29) holds.

Then the bias will also be small in the sense that |y|δ < λB

4πn
.

In Figure 4 we show the imaging function for several values of the blurring parameter

δ. If δ > 1/(nωcτL) we indeed see that we get blurring in the form of smearing of the

image and amplitude damping.

In conclusion the sensitivity to medium uncertainty increases with n. The results

of this section show that the imaging function is stable with respect to measurement

noise but unstable with respect to medium uncertainty.

5. Imaging of Reflector

In this section we aim to image a reflector located at y ∈ (−L/2, L/2) and with a source

at ys ∈ (L/2,∞). The medium is now modeled by

c(x) =





c0/n if x ∈ [−L/2, y −D)

αc0 if x ∈ [y −D, y]

c0/n if x ∈ (y, L/2]

c0 otherwise

. (30)
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−0.2 −0.1 0 0.1 0.2
−10

0

10
 δ=10−5

I p,
1

−0.2 −0.1 0 0.1 0.2
−1

0

1
 δ=10−2

∆ y

I p,
1

Figure 4. The imaging function Ip,1 as function of offset ∆y = ŷ − y(1 + δ) for

δ = 10−5 (top) and 10−2 (bottom) when L = 1, n = 20,Ω = 10, ωc = 100, c0 = 1 in the

non-dimensionalized coordinates. This gives (nωcτL)
−1 = 1.25 × 10−5 as a blurring

threshold for δ and an optimal resolution corresponding to l = 0.03. Note that the

blurring gives damping in imaging amplitude and lateral smearing.

✲

−L/2 L/2 ysy x

✲
a2

✛
b2

✲
a3b

✛
b3b = 0

✲
a3

✛
b3

✲
a1 a1b

✛
b1 b1b

✲
a0 = 0

✛
b0

c = c0 c0/n αc0 c0/n c0

Figure 5. Wave amplitudes with a source at ys and a thin reflector at [y −D, y].

The data are collected at the observation point yo ∈ (ys,∞) in the frequency band

[ωc − Ω/2, ωc + Ω/2], with Ω < 2ωc.

5.1. Wave Decomposition

The wave amplitudes are defined by (7) with τ(x) =
∫ x

0
1/c(x′)dx′. The right

propagating mode amplitude is stepwise constant:

a(x, ω) =





a0(ω) for x < −L/2

a1(ω) for −L/2 < x < y −D

a1b(ω) for y −D < x < y

a2(ω) for y < x < L/2

a3(ω) for L/2 < x < ys
a3b(ω) for ys < x

,

and similarly for the left propagating mode amplitude b(x, ω), see Figure 5.

The coupling relations of the wave components at the boundary of the slow medium

section are again given by (9). The analogues of the relations (10), (11), and (12) are

now: (i) the radiation conditions

b3b(ω) = 0, a0(ω) = 0, (31)
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that is, no energy is coming in from ±∞, (ii) the source conditions

a3b(ω) = a3(ω) + e−iωτ(ys), b3b(ω) = b3(ω)− eiωτ(ys). (32)

In addition we now have the interface reflection relations at x = y −D and x = y:[
a1b(ω)e

iωτ(y−D)

b1b(ω)e
−iωτ(y−D)

]
= J−

α

[
a1(ω)e

iωτ(y−D)

b1(ω)e
−iωτ(y−D)

]
, (33)

[
a2(ω)e

iωτ(y)

b2(ω)e
−iωτ(y)

]
= J+

α

[
a1b(ω)e

iωτ(y)

b1b(ω)e
−iωτ(y)

]
, (34)

for

J±
α =

[
r+α ±r−α
±r−α r+α

]
, r±α =

1

2

( 1√
αn

±√
αn

)
. (35)

This gives a total of 12 equations for the 12 unknowns.

We introduce the notation

τ1(y,D) = τ(y −D)− τ(−L/2) = n
L/2 + y −D

c0
, (36)

τ2(y,D) = τ(y)− τ(y −D) =
D

αc0
, (37)

τ3(y,D) = τ(L/2)− τ(y) = n
L/2− y

c0
, (38)

with the inclusion supported in (y − D, y). Note first that the propagator matrix

associated with the inclusion can be expressed by[
a2(ω)e

iωτ(y)

b2(ω)e
−iωτ(y)

]
= J+

α

[
eiωτ2(y,D) 0

0 e−iωτ2(y,D)

]
J−
α

[
a1(ω)e

iωτ(y−D)

b1(ω)e
−iωτ(y−D)

]

=

[
h1(ω, y,D) h2(ω, y,D)

h2(ω, y,D) h1(ω, y,D)

][
a1(ω)e

iωτ(y−D)

b1(ω)e
−iωτ(y−D)

]
,

for

h1(ω, y,D) = (r+α )
2e−iωτ2(y,D) − (r−α )

2eiωτ2(y,D), (39)

h2(ω, y,D) = (r+α r
−
α )(e

−iωτ2(y,D) − eiωτ2(y,D)). (40)

This gives the following expression for the amplitude of the reflection a3b(ω) at an

observation point yo ∈ (ys,∞):

a3b(ω) = e−iωτ(ys) + eiω(τ(ys)−2τ(L/2))

× c2(ω, y,D)−R2c2(ω, y,D)−R(c1(ω, y,D)− c1(ω, y,D))

c1(ω, y,D)−R2c1(ω, y,D)−R(c2(ω, y,D)− c2(ω, y,D))
,(41)

for

c1(ω, y,D) = (eiωτ2(y,D) −R2
αe

−iωτ2(y,D))eiω(τ1(y,D)+τ3(y,D)), (42)

c2(ω, y,D) = Rα(e
iωτ2(y,D) − e−iωτ2(y,D))eiω(−τ1(y,D)+τ3(y,D)), (43)

where we have defined the reflection coefficient

Rα = −r−α
r+α

. (44)
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5.2. Wave Recordings

The observable quantity of interest is the complex amplitude a3b(ω)e
iωτ(yo) observed at

yo ∈ (ys,∞). We remove the original right-going wave and a known phase from this

observable quantity to get

ames(ω) =
(
a3b(ω)e

iωτ(yo) − e
i ω
c0

(yo−ys)
)
e
−i ω

c0
(yo+ys−L)

. (45)

Note that we have

τ(yo)− τ(ys) =
1

c0
(yo − ys),

τ(yo) + τ(ys)− 2τ(L/2) =
1

c0
(yo + ys − L),

so that ames(ω) is of the form

ames(ω) =
c2(ω, y,D)−R2c2(ω, y,D)−R(c1(ω, y,D)− c1(ω, y,D))

c1(ω, y,D)−R2c1(ω, y,D)−R(c2(ω, y,D)− c2(ω, y,D))
. (46)

When the inclusion is small such that nωc

c0
D ≪ 1, we have

ames(ω) = d0(ω) +
iωD

c0
d1(ω)

+
iωD

c0
d2(ω)(e

−i ω
c0

nL
e
−2i ω

c0
ny

+R2e
i ω
c0

nL
e
2i ω

c0
ny
), (47)

d0(ω) = R 1− e
2i ω

c0
nL

1−R2e
2i ω

c0
nL

d1(ω) =
2R(1−R2)e

2i ω
c0

nL

(1−R2
α)(1−R2e

2i ω
c0

nL
)2
(n(1−R2

α)−
1

α
(1 +R2

α)), (48)

d2(ω) =
2Rα(1−R2)e

2i ω
c0

nL

(1−R2
α)α(1−R2e

2i ω
c0

nL
)2
, (49)

up to terms of smaller order O(n2 ω
2
c

c20
D2), as shown in the appendix. Note that

- the leading-order term d0 cancels at the set of discrete frequencies ωm = m∆ω,

m = 1, 2, . . ., with ∆ω defined by (24),

- the third term (proportional to d2) in the expansion (47) contains the information

about the inclusion location y.

When D = 0 we get

ames(ω) =
R(1 − e

2i ω
c0

nL
)

1−R2e
2i ω

c0
nL

= R− T 2

∞∑

j=0

R1+2je
2i ω

c0
nL(1+j)

, (50)

corresponding to the direct reflection from the interface of the section at L/2 and then

reflected signal components that have reverberated j times in the section (−L/2, L/2).

Note that the reflected signal is zero if the frequency ω is resonant (i.e. if the frequency

is equal to ωm = m∆ω for some integer m). In this case the emitted wave probes in the

most efficient way the section in (−L/2, L/2) as it is reflected back and forth coherently

between the two interfaces and it does not come back to the right-half space x > L/2.
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5.3. Imaging Functions

Assume from now on that there is an inclusion. The adjoint imaging function is

Ira(ŷ, D̂) =
1

4Ω

∫ ωc+Ω/2

ωc−Ω/2

ames(ω)â(ŷ, D̂, ω)dω + c.c. , (51)

where â(ŷ, D̂, ω) is given by (46) with ŷ and D̂ in place of y and D. From the form (47)

of ames, we can see that the modulation functions d1 and d2 become highly concentrated

at the set of discrete frequencies ωm defined by (24) for large n. This means that, for

large n, the adjoint imaging function only uses the observations at the frequencies ωm.

As in the case of source imaging addressed in the previous section, this motivates the

introduction of a simplified version of the adjoint imaging function:

Iras(ŷ, D̂) =
∆ω

4Ω

∞∑

m=−∞

I(ωc−Ω/2,ωc+Ω/2)(|ωm|)ames(ωm)â(ŷ, D̂, ωm). (52)

From the form (47) of ames, we can see that, if we are only interested in the localization

problem, then we should use

Ir1(ŷ) =
∆ω

4Ω

∞∑

m=−∞

(−1)mI(ωc−Ω/2,ωc+Ω/2)(|ωm|)(− i
ωm

c0
)

×
(
e
2iωm

c0
nŷ

+R2e
−2iωm

c0
nŷ
)
ames(ωm). (53)

We analyze this imaging function in the following.

First imaging function. From the expression (50) in the absence of inclusion, it

is appropriate to observe the field at the resonant frequencies ωm so that the recorded

reflected wave associated to the inclusion is not buried in the reflected wave components

asssociated to the boundaries of the section. In the presence of a small reflector with

nωc

c0
D ≪ 1 we have

ames(ωm) =
2
α
(−1)mRα(e

−2iωm
c0

ny
+R2e

2iωm
c0

ny
) + 2nR(1−R2

α)− 2
α
R(1 +R2

α)

(1−R2
α)(1−R2)

× i
ωmD

c0

[
1 +O

(
n
ωc

c0
D
)]

.

This is another (but analogous) motivation for the introduction of the imaging function

(53).

When Ω is much larger than ∆ω, we can use the continuum approximation for the

sums in (53) and we find that, unless the inclusion is close to −L/2 or L/2 within a

distance of the order of l, the imaging function is given by

Ir1(ŷ) =
2Rα

α(1−R2)(1−R2
α)

ω2
cD

c20

[1 +R4

2
sinc

(Ωn(ŷ − y)

c0

)
cos

(2ωcn(ŷ − y)

c0

)

+R2sinc
(Ωn(ŷ + y)

c0

)
cos

(2ωcn(ŷ + y)

c0

)]
, (54)

for ŷ far enough from −L/2 or L/2 (ie farther than l).
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This imaging function can localize the inclusion with the resolution l given by (19),

but there is a ghost image: there are two peaks at ŷ = ±y and it is not easy to decide

which of these two peaks corresponds to the position of the inclusion. Indeed the peak

associated to the inclusion has an amplitude that is larger than the ghost peak, by a

factor (1 +R4)/(2R2), but this factor is close to one when n ≫ 1.

When n is large, the amplitude factor 2Rα/[α(1 − R2)(1 − R2
α)] in (54) is about

n2/8. This enhancement factor of the order of n2 comes from the fact that the waves

have been reflected back and forth about n times within the section, and during each

pass the interaction with the inclusion generates small scattered waves that build up

coherently to generate the reflected signal. As a consequence this imaging function will

be robust against measurement noise but sensitive to medium uncertainty (knowledge

of c0/n), as we will see in the next section.

Second imaging function. Another imaging function can be formed by using

only the first arrivals of the recorded signals. Here we assume that y − D > 0, and

that by a time windowing technique, we record only the components of the observable

quantity a3b(ω)e
iωτ(yo) that arrive before the time (yo+ys−L+nL)/c0 at the observation

point yo. Note that the observable quantity a3b(ω)e
iωτ(yo) is a sum of components of the

form eiωτ in the frequency domain (this can be seen by writing the denominator in (41)

as a series expansion), or equivalently a sum of Dirac distributions δ(t− τ) in the time

domain. Therefore, the time windowing selects the components whose phases are of the

form eiωτ with τ < (yo + ys − L + nL)/c0. After the time windowing we remove the

original right-going wave eiω(yo−ys)/c0 and the known phase ω(yo + ys −L)/c0 as in (45),

which gives the new data set ãmes(ω). Compared to ames(ω), the time windowing removes

the components whose phases are of the form eiωτ with τ > nL/c0. In particular, it

removes the components of the recorded signals that arrive after the first echo from

the boundary at −L/2. Indeed these components have phases of the form eiωτ with

τ ≥ t1 := 2(nL − (n − 1/α)D)/c0, where t1 is the time for a round trip from L/2 to

−L/2, which is larger than nL/c0 provided D < L/2.

By writing the denominator of ames(ω) as a series expansion, we get an infinite sum

with terms of the form eiωτ , and by keeping only those terms with τ ≤ nL/c0, we find

ãmes(ω) = R− (1−R2)
J∑

j=1

2ji−jRj−1Rj
α sin

j ( ω
c0

D
α
)

(e
−i ω

c0

D
α −R2

αe
i ω
c0

D
α )j

e
i ω
c0

nj(L−2y)
,

where J is the integer such that (L − 2y)J < L ≤ (L − 2y)(J + 1). The term R is

the direct reflection from the interface at L/2. The first term (j = 1) of the sum is

the wave that has been reflected by the inclusion and directly transmitted to the region

x > L/2. The jth term of the sum is the wave that has been reflected by the inclusion

and then reflected j − 1 times between the interface at L/2 and the inclusion before

being transmitted to the region x > L/2. When nωc

c0
D ≪ 1 the new data set can be
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expanded as

ãmes(ω) = R+
2iωD

c0

Rα(1−R2)

α(1−R2
α)

e
i ω
c0

n(L−2y)
[
1 +O

(
n
ωc

c0
D
)]

.

Additionally, if n is large then the amplitude factor [Rα(1 − R2)]/[α(1 − R2
α)] is

approximately one. This gives the motivation for the following imaging function:

Ir2(ŷ) =
1

2Ω

∫ ωc+Ω/2

ωc−Ω/2

(− i
ω

c0
)e

−i ω
c0

n(L−2ŷ)
ãmes(ω)dω + c.c. (55)

In the presence of a small reflector with nωc

c0
D ≪ 1 and with the inclusion farther than

l from the section boundaries it has the form

Ir2(ŷ) =
2Rα(1−R2)

α(1−R2
α)

ω2
cD

c20
sinc

(Ωn(ŷ − y)

c0

)
cos

(2ωcn(ŷ − y)

c0

)
. (56)

The resolution of this imaging function is l given by (19) and there is no ghost

in it contrarily to the imaging function (53). Note, however, that the amplitude is n2

times smaller than the one of the previous imaging function (53), since the amplitude

factor [2Rα(1 − R2)]/[α(1 − R2
α)] is about 2 when n is large. This is because we only

exploit the first arrival in this imaging function, while the previous one exploited the

full sequence of reflected waves. As a consequence this imaging function will be less

robust with respect to measurement noise than the imaging function (53), but also less

sensitive to medium uncertainty.

Third imaging function. In the previous section we obtained an image

without a ghost as in the imaging function (53), however, at the expense of loosing a

multiplicative factor of n2 in the amplitude, which makes the imaging function sensitive

to measurement noise. Moreover, this imaging function requires a time-windowing of

the measured data. It is possible to get rid off the ghost in the imaging function (53)

in a simpler way, at the expense of losing a multiplicative factor of the order of n only.

The idea is to add appropriate weights to the two terms in the imaging function (53) to

cancel the ghost. Consider the imaging function

Ir3(ŷ) =
∆ω

4Ω

∞∑

m=−∞

(−1)mI(ωc−Ω/2,ωc+Ω/2)(|ωm|)(− i
ωm

c0
)

×
(
e
2iωm

c0
nŷ −R2e

−2iωm
c0

nŷ
)
ames(ωm). (57)

Here, the sign of the factor involving R2 is chosen to cancel the ghost term. When Ω is

much larger than ∆ω, in the presence of a small reflector with nωc

c0
D ≪ 1 and with the

inclusion farther than l from the section boundaries, the imaging function is given by

Ir3(ŷ) =
(1 +R2)Rα

α(1−R2
α)

ω2
cD

c20
sinc

(Ωn(ŷ − y)

c0

)
cos

(2ωcn(ŷ − y)

c0

)
, (58)

for ŷ far enough from −L/2 or L/2.

This imaging function has the same resolution (19) as (53), it does not have any

ghost image, and it is better than the imaging function (55) because it uses all the
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reflected waves and not only the first arrival. However, compared to (53), it has lost

a multiplicative factor of the order of n. Indeed, when n is large, the amplitude factor

(1+R2)Rα/[α(1−R2
α)] is about n. This shows that it has less robustness with respect

to measurement noise than the imaging function (53), as we will see in the next section.

Numerical illustrations. We illustrate the performance of the imaging functions

Ir1(ŷ), Ir2(ŷ), and Ir3(ŷ) for some values of the parameters. We choose in a non-

dimensionalized setting: n = 5;ωc = 32π; Ω = ωc/2;L = 10;D = 10−4;α = 1; c0 = 1,

moreover the reflector is located at y = −0.15. This gives a resolution of l = 0.025.

In Figure 6 we show the imaging function Ir1(ŷ) defined by (53) with the red solid

line and its theoretical value (54) by the dashed blue line.
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Figure 6. The imaging function Ir1(ŷ) defined by (53) as function of search point ŷ

(red solid line) and its theoretical value (54) (blue dashed line). The right picture is a

zoom of the left picture.

In Figure 7 we show the imaging function Ir2(ŷ) defined by (55) with the red solid

line and its theoretical value (56) by the dashed blue line.

In Figure 8 we show the imaging function Ir3(ŷ) defined by (57) with the red solid

line and its theoretical value (58) by the dashed blue line. Note that the ghost is now

suppressed, albeit not completely removed. Indeed we have nωcD/c0 ≃ 0.05, which

means that secondary peak is not completely negligible. If we reduce the inclusion

width further D = 10−5, then nωcD/c0 ≃ 0.005, and the ghost is not visible anymore

(its relative amplitude compared to the main peak has been reduced by a factor 10

compared to the case D = 10−4), as seen the right picture in Figure 8.

5.4. Robustness with Respect to Measurement Noise

In the presence of additive noise the measured data have the form

ames(ωm) =
(
a3b(ωm)e

iωmτ(yo) − e
iωm

c0
(yo−ys)

)
e
−iωm

c0
(yo+ys−L)

+ σwm, (59)

where wm is an independent and identically distributed sequence of zero mean and unit

variance complex circular random variables. The expected value of the imaging function



Medium Induced Resolution Enhancement 21

−0.2 −0.1 0 0.1 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

Search point :  y’ 

Imaging Function
I r2

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1
−1.5

−1

−0.5

0

0.5

1

1.5

Search point :  y’ 

Imaging Function

I r2

Figure 7. The imaging function Ir2(ŷ) defined by (55) as function of search point ŷ

(red solid line) and its theoretical value (56) (blue dashed line). The right picture is a

zoom of the left picture.
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Figure 8. The imaging function Ir3(ŷ) defined by (57) as function of search point

ŷ (red solid line) and its theoretical value (58) (blue dashed line). In the left picture

D = 10−4. In the right picture D = 10−5.

corresponds to the imaging function in the noise-free case. The variances are

V ar[Ir1(ŷ)] = V ar[Ir3(ŷ)] =
ω2
c∆ωσ2

8c20Ω
(1 +R4).

Therefore the signal-to-noise ratios for the two imaging functions (53) and (57) are

SNR1 =
E[Ir1(y)]

V ar[Ir1(ŷ)]1/2
=

Ω1/2ωcD

c0∆ω1/2σ

n2

4
,

SNR3 =
E[Ir3(y)]

V ar[Ir3(ŷ)]1/2
=

Ω1/2ωcD

c0∆ω1/2σ
n,

for large n, which confirms that the imaging function (53) is more robust than (57) with

respect to measurement noise.

If we assume that the integral in (55) is discretized over the grid ωm, then we find
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that

V ar[Ir2(ŷ)] =
ω2
c∆ωσ2

2c20Ω
.

Therefore the signal-to-noise ratio for the imaging function (55) is

SNR2 =
E[Ir2(y)]

V ar[Ir2(ŷ)]1/2
=

Ω1/2ωcD

c0∆ω1/2σ
2
√
2,

for large n, which confirms that the imaging function (55) is less robust than (53) and

(57) with respect to measurement noise.

5.5. Sensitivity with Respect to Medium Uncertainty

As in the source case we assume uncertainty in the medium parameter and examine

when this when this uncertainty leads to a degradation in the image. If the medium

parameter n is estimated with an error δ: 1/n̂ = (1 + δ)/n, then the criterium for the

stability of the imaging function (55) is

δ <
1

ΩτL
. (60)

From (55) it is seen that the medium uncertainty gives rise to a shift in the peak (by

δL/2) which will be small compared to the image resolution under the above condition.

For the imaging functions (53) and (57) the medium uncertainty translates into a

blurring of the peak. Via an analysis as in the case with an internal source we find

that this blurring will be relatively small if

δ <
1

nωcτL
. (61)

Thus, in conclusion the imaging functions Ir1 and Ir3 are robust with respect to

measurement noise, but sensitive with respect to medium uncertainty, while Ir2 is robust

with respect to medium uncertainty, but sensitive with respect to measurement noise.

6. Conclusions

We have discussed a situation which we believe in a very simple context explains a

phenomenon of super resolution as observed in a number of recent studies, including

experimental observations [4]. Here the simple mechanism that generates the relatively

high resolution is the contrast in wave speed. High resolution or super resolution here

refers to resolution better than half the wavelength as recorded by the observer. The

main point is indeed that what determines the resolution is the wavelength at the

domain of the source or the scatterer to be imaged and not the wavelength as observed

in the domain of the recorder. Thus if these have a high contrast we will observe super

resolution. Here, we have also analyzed the sensitivity and robustness to measurement

noise and medium uncertainty. We find that by exploiting resonance frequencies we can

significantly reduce the sensitivity to measurement noise at the expense of relatively

high sensitivity to medium uncertainty.
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We remark that a similar phenomenon could be observed if the observation point

was located in a section of anomalous high velocity, the source could then be localized

with far greater accuracy than what is suggested by the wavelength at the point of

observation. Indeed, what is important is the velocity contrast in between the source

or reflector domain and the domain of observation.

The results presented in this paper have been obtained for the scalar wave equation

with a one-dimensional, piecewise constant medium, so as to obtain explicit results that

clarify the mechanisms responsible for super-resolution. It is possible to extend the

results to continuous media by using the method developed in [13, Chapter 4], and to

vector waves (such as elastic waves), since the formalism in terms of right- and left-going

wave modes is still available in these cases. Generalizations to three-dimensional media

by the same technique are not straightforward by they would be possible in some special

geometries such as nested radially symmetric or nested hypercube domains.
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Appendix A. The Complex Amplitude of the Recorded Field

In the presence of a small inclusion such that

n
ωc

c0
D ≪ 1,

the expansion of ames(ω) is given by:

ames(ω) =
Dmes(ω)

Nmes(ω)
,

Dmes(ω) = R(1−R2
α)(e

−i ω
c0

nL − e
i ω
c0

nL
)

+ 2i
ω

c0
D
Rα

α
(e

−2i ω
c0

ny
+R2e

2i ω
c0

ny
)

+ i
ω

c0
DR

(
n(1 −R2

α)−
1

α
(1 +R2

α)
)
(e

−i ω
c0

nL
+ e

i ω
c0

nL
)

+O(n2ω
2

c20
D2),

Nmes(ω) = (1−R2
α)(e

−i ω
c0

nL −R2e
i ω
c0

nL
)

+ 2i
ω

c0
D
RRα

α
(e

−2i ω
c0

ny
+ e

2i ω
c0

ny
)

+ i
ω

c0
D
(
n(1−R2

α)−
1

α
(1 +R2

α)
)
(e

−i ω
c0

nL
+R2e

i ω
c0

nL
)

+O(n2ω
2

c20
D2).
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